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Abstract

The heat transfer rate from a solid boundary to a highly viscous fluid can be enhanced significantly by a phenomenon which is

called chaotic advection or Lagrangian turbulence. Although the flow is laminar and dominated by viscous forces, some fluid particle

trajectories are chaotic due either to a suitable boundary displacement protocol or to a change in geometry. As in turbulent flow, the

heat transfer rate enhancement between the boundary and the fluid is intimately linked to the mixing of fluid in the system. Chaotic

advection in real Stokes flows, i.e. flows governed by viscous forces and that can be constructed experimentally, is reviewed in this

paper. An emphasis is made on recent new results on 3-D time-periodic open flows which are particularly important in industry.

� 2003 Elsevier Science Inc. All rights reserved.
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1. Introduction

Chaotic advection is a subject which has attracted

some attention over the past two decades. It can be de-
scribed simply as chaotic particle trajectories in a laminar

flow dominated by viscous forces. This phenomenon can

occur in two-dimensional time-periodic or in three-

dimensional flows. The equations of motion can be writ-

ten as a two or a three equation autonomous dynamical

system which exhibits chaotic behaviour. The first

known study on such a dynamical system is due to Henri

Poincar�ee (1893) and his work on the three body problem.
From classical mechanics it is known that the orbits of

planets around the sun are elliptical, as discovered by

Kepler in the early seventeenth century from an analysis

of astronomical data gathered over a very long period of

time. Using Newton�s laws, elliptical orbits of planets

around the sun can also be demonstrated mathematically

when only the attractive force between the sun and the

planet is considered. Now, what happens when the pla-
net is subject to other forces, such as the attraction of

other planets? In the solar system, only the gravitational

force between Jupiter and Saturn (because of their

enormous mass) can be considered as non-negligible

compared to the attractive forces between planets and

the sun. It has been shown that the orbits of Jupiter and

Saturn are indeed chaotic, although one needs to moni-

tor the orbits for a very long time, of the order of several
thousand of years, to notice such behaviour.

Recent interest in chaotic dynamical systems was

sparked by Lorenz (1963) and his now well known and

famous three equation model of convective movement in

the atmosphere. Having written a computer program to

solve his three equation dynamical system (a very sim-

plified model of the earth�s climate) from initial data,

Lorenz discovered that his obtained results were totally
different when the input data was double precision (with

16 significant figures) from those obtained with single

precision input data. In fact, chaotic behaviour is often

defined as sensitivity to initial conditions. This explains

why the catch phrase The flap of a butterfly wing in

Brazil can cause a tornado in Europe has become so

popular. Notice that in the two chaotic dynamical sys-

tems discussed so far the time scale necessary to observe
such behaviour is very different. In the first case, one

needs to look at data over several thousands of years to

notice chaotic behaviour while, in the second case, a

week is often long enough.

The particular topic of chaotic advection in flows

governed by viscous forces starts with the publication of

Aref�s paper in 1984. There, the author explains that the

advection problem in a Lagrangian representation

* Corresponding author. Tel.: +33-03-83-59-56-14; fax: +33-03-83-

59-55-51.

E-mail address: esaatdji@ensic.inpl-nancy.fr (E. Saatdjian).

0142-727X/03/$ - see front matter � 2003 Elsevier Science Inc. All rights reserved.

doi:10.1016/S0142-727X(03)00022-5

International Journal of Heat and Fluid Flow 24 (2003) 310–321

www.elsevier.com/locate/ijhff

mail to: esaatdji@ensic.inpl-nancy.fr


defines a dynamical system. If the fluid is incompressible

and the flow is two-dimensional the system is Hamilto-

nian and has just one degree of freedom. Mixing in a

stirred tank is studied using an idealized model. The
agitators are modeled as point vortices and the fluid is

assumed inviscid. Chaotic trajectories arise when the

agitator is moved in such a way that the potential flow is

unsteady.

As mentioned above, it can be shown that chaotic

advection in Stokes flows is possible only if the flow is 2-

D with periodic boundary conditions or three-dimen-

sional. There are several real flow configurations which
give rise to such behaviour. The most simple two-

dimensional flow configuration is the one between two

eccentric rotating cylinders. When either or both cylin-

ders are turning at constant angular velocities, it is

possible to solve the Stokes equations and obtain a

closed form analytical solution. This is the starting point

of all mathematical analysis on this Hamiltonian system.

Obviously, the particle trajectories are not chaotic when
the cylinders turn at constant angular velocity. How-

ever, if one cylinder is made to turn at an angular ve-

locity which varies with time, then the equations become

non-integrable and chaotic particle trajectories are

possible. For the unsteady case, a closed form analytical

solution is no longer available. Nevertheless, if the

process is assumed to be quasi-static, i.e. if the modu-

lation is slow, then one can assume that the flow field is
given by the instantaneous angular velocity ratio. The

dynamical system thus obtained can be integrated nu-

merically using any well known numerical technique.

When the cylinders turn in opposite directions, the in-

stantaneous streamlines show that a homoclinic saddle

point appears in the region of minimum gap. The dis-

ruption of saddle connections is a well-established

mechanism for the generation of chaos in Hamiltonian
systems (Rom-Kedar et al., 1990; Ottino, 1990).

There are other two-dimensional real periodic flow

configurations which exhibit chaotic particle trajectories.

The flow between two confocal ellipses whose walls glide

circumferencially was imagined (by analogy to the mo-

tion of planets around the sun, see Ekeland (1984)) and

constructed in France. For the case where the walls are

moving in opposite directions, the streamlines exhibit a
heteroclinic tra-jectory with two saddle points connected

by two different streamlines. Although much more diffi-

cult to construct, it can be shown that this flow geometry

can give better mixing/heat transfer enhancement than

the flow between eccentric rotating cylinders simply be-

cause there are twice as many saddle points. Other 2-D

periodic flow configurations which have been studied in

the literature are cavity flows, and the vortex mixing flow
(two cylinders inside a larger one, all three can turn).

The three-dimensional flow configurations where

chaotic advection has been studied can be separated into

two categories, steady and time periodic flows. Some

authors prefer the terminology of spatially periodic and

time periodic 3-D flows. The 3-D steady flow which

exhibits chaotic advection is the one in a twisted pipe.

This flow geometry consists of a series of segments
whose plane of curvature forms an angle relative to the

preceding segment. This flow can mix fluid over its cross

section without any moving parts. And the pressure

drop does not significantly increase by this phenome-

non. However, in this flow with no moving parts, there

is no control parameter and mixing performance de-

pends solely on the total number of bends in the tube.

If an axial flow is superposed into any 2-D periodic
flow configuration discussed above, chaotic advection

can also occur. This type of flow is sometimes called a

2 1
2
-D flow because the three velocity components are

independent of the axial coordinate. In these systems the

degree of mixing and the heat transfer enhancement can

be controlled somewhat by the modulation frequency of

the boundary displacement. This advantage is gained at

the expense of moving parts.
In this review paper we examine each flow category

separately. Obviously 2-D periodic flows are considered

first since most results, theoretical and experimental,

deal with these flows. The other two categories, 3-D

steady flows and 3-D periodic flows are considered later.

For each flow category, once chaotic behaviour has been

observed, we highlight the analytical, numerical and

experimental tools that have been developed recently to
quantify chaos and mixing. In a certain respect, until the

end of the 1980s, most engineering research was con-

cerned with showing that the studied system did exhibit

chaotic behaviour and with the development of tools for

the study of chaotic dynamical systems. Beginning in the

1990s, the developed tools for the quantification of

chaos have been applied to the real flows in order to

optimize mixing and heat transfer enhancement.

2. Heat transfer enhancement in 2-D flows

To understand physically the phenomenon of chaotic

heat transfer enhancement, let us first consider fluid

placed between two concentric circular cylinders. When

the boundaries are made to turn at very low angular
velocity so that inertial effects are not important, the

solution of the equations of motion leads to an angular

velocity profile that is a function of radius. This flow is

one-dimensional. If a blob of tracer is put anywhere in

the fluid and if one or both cylinders are made to turn at

very low angular velocity so that again inertial effects are

negligible, one may see that, although the tracer appears

to mix inside the fluid, this is not the case. If the direc-
tion of the velocities is inverted so that the cylinders are

returned to their initial position one can see, as in

the film by G.I. Taylor Low Reynolds numbers hydro-

dynamics, that the tracer comes back to its original
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position and only the effects of molecular diffusion alter

the initial picture. In this very well-known film, this

experiment was set up to demonstrate that Stokes flows

are reversible. Time-periodic operation (as long as iner-
tial effects are negligible) changes nothing to the picture.

From a heat transfer point of view, the same lack-

luster results are observed. Let us suppose that the inner

and outer cylinders are maintained at temperatures Thot

and Tcold respectively. If the two cylinders are motionless,

the steady-state temperature distribution will be exactly

given by the solution of r2T ¼ 0, or in cylindrical co-

ordinates by T ðrÞ ¼ C1 ln r þ C2. Now, if one or both
cylinders are made to turn slowly, the temperature dis-

tribution does not change so long as creeping flow con-

ditions are maintained since the advection terms

V � rT ¼ 0 are equal to zero. When the two cylinders are

concentric, for the heat transfer rate to increase one must

turn the cylinders fast enough to create Taylor vortices, a

subject not studied here. Notice that the wall to fluid

local heat flux which is simply q ¼ �krT remains the
same as in the motionless case and the Nusselt number,

which is defined as the convective to the conductive heat

flux, is exactly equal to 1. In conclusion, the effort spent

in turning the cylinders is, in this case, absolutely

worthless since the heat transfer rate (or the mixing of the

tracer) is not increased by the cylinders� motion.

2.1. Journal bearing flow

Now, what happens if the two same cylinders are

placed in an eccentric position. Notice that this geome-

try is very similar to the previous one since only the

inner cylinder location has changed. In this case the flow

field is two-dimensional. Because of its importance in

lubrication, this problem has attracted much attention

over the last 120 years, and even Osborne Reynolds
(1886) himself derived a critical eccentricity necessary

for separation to occur when the inner cylinder only is in

motion. The analytical solution of the Stokes equations

in this geometry has been obtained in at least three

different coordinate systems. The natural choice here is a

bipolar, orthogonal coordinate system. In this coordinate

system, Jeffery (1922), M€uuller (1942) and Ballal and

Rivlin (1976) have all obtained a closed form analytical
solution. The mathematical expressions of all the con-

stants of integration (they are very long) are only given

in the last paper above. Unfortunately, bipolar coordi-

nates do not degenerate into cylindrical coordinates as

the eccentricity tends towards zero. Furthermore, there

is also a singularity problem as the eccentricity tends

towards 1. For this reason, Di Prima and Stuart (1972)

obtained the solution to this same problem using a
modified bipolar coordinate system which degenerates

into cylindrical coordinates as the eccentricity tends to

zero. The mathematical expressions are, nevertheless

very long and tedious. To be concise, a third analytical

solution with a mixed Cartesian-polar non-orthogonal

coordinate system, was obtained by Wannier (1950).

Although analytical solutions for this problem have

appeared in the literature in different coordinate sys-
tems, they all give the same results. Here the streamlines

are more complicated than in the concentric case be-

cause the flow field is two-dimensional. Fig. 1, from

Ottino (1989), shows typical streamlines for the 4 pos-

sible angular velocity displacements, (a) inner cylinder

motion, (b) outer cylinder motion, (c) counter-rotation

and (d) co-rotation. In each case, a vortex appears in the

streamline pattern. At first thought, one can be led to
assume that these 2-D steady flows mix well. Actually,

the flow field is such that the flow domain is separated

into two or more zones. If a tracer is put into a given

zone it remains in that zone. Notice also the appearance

of saddle points (points where two streamlines intersect)

when the cylinders are both turning, cases (c) and (d).

This is an important feature (Peixoto, 1962) since time-

periodic operation leads to the disruption of homoclinic
or heteroclinic trajectories. This is important because

this phenomenon is responsible for enabling the tracer

to go from one zone to the other, i.e. chaotic advection.

In the journal bearing flow, the heat transfer rate

from the wall to the fluid when the two boundaries turn

at constant velocity can be calculated by solving the

convection/diffusion equation numerically. Unlike the

concentric case, the advection terms V � rT terms are
not zero here. Assuming that the hydrodynamic and

thermal problems are not coupled (for example via

temperature dependent fluid properties or natural

Fig. 1. Streamlines in the journal bearing flow for the case of (a) inner

cylinder rotation, (b) outer cylinder rotation, (c) counter-rotation, (d)

co-rotation.
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convection), it is possible to use the analytical velocity

field to solve for the thermal field in the conservation of

energy equation. Defining, as before, a Nusselt number

as the heat transfer rate divided by the heat transfer rate
when both cylinders are motionless (pure conduction),

numerical simulations show that the obtained Nusselt

number depends on the square root of the P�eeclet num-

ber, Nu / Pe1=2. Here, since the boundaries turn at

constant velocity, the heat transfer enhancement is due

to the recirculation region, it depends on the size of the

vortex; the bigger the vortex the higher the average

Nusselt number.
Once the two-dimensional flow field for constant

angular velocities is known, what happens when tracer is

put in the annular region and the cylinders are turned,

not at constant angular velocity but with an angular

velocity which varies periodically with time. In order for

the tracer to mix, at least one cylinder must be made to

turn at an angular velocity which varies time-periodi-

cally while the other one turns at a constant angular

velocity. Another possibility is to turn one cylinder at a

time. This experiment was constructed during the 1980s
by Chaiken et al. (1986) in Columbia University in order

to show, visually, chaotic advection in Stokes flows.

For any boundary displacement protocol, the trajec-

tories of all material points are either periodic or cha-

otic. This is illustrated in Fig. 2, reprinted from the

article by Swanson and Ottino (1990). It shows a journal

bearing system and two blobs of coloured dye, one of

red dye and the other of blue dye. The blobs of dye are
placed initially (a) in the region of maximum gap. The

cylinders are turned alternatively one at a time. One

period consists of an inner cylinder rotation of 450� and

an outer cylinder rotation of 150� in the opposite di-

rection. The photographs (b)–(i) were taken after 1, 2, 3,

4, 8, 12, 16 and 30 periods. Notice how the red dye

Fig. 2. Experiments demonstrating the near solid-body rotation in the regular region and the large difference in stretching between the regular and the

chaotic regions. The geometry is defined by Rout=Rin ¼ 3 and � ¼ 0:45. The outer cylinder displacement per period is hþ ¼ 150� and the inner cylinder

displacement per period is three times as much. The initial placement of the two line segments (a) and the deformation after 1, 2, 3, 4, 8, 12, 16, and 20

periods (b)–(i) respectively. This figure appeared in Swanson and Ottino (1990).
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stretches and folds, its length increases exponentially.

On the other hand, the white dye does not mix even after

such a large number of periods because it was placed

initially in a regular region.
Now, is it possible to predict whether fluid placed at

a certain location will mix thoroughly for a given

boundary movement without doing the experiments?

The studies by Chaiken et al. (1987) and by Aref and

Balachandar (1986), which appeared at around the same

time, calculated Poincar�ee sections, one of the most

simple tools available for the analysis of 2-D periodic

flows, for this flow. As shown clearly in Aref (1984), the
Lagrangian representation of 2-D unsteady incom-

pressible flow can be written as a two equation, non-

autonomous dynamical system of the form:

dxi
dt

¼ fiðx; y; z; tÞ; i ¼ 1; 2

which can be integrated numerically. A material point is

chosen anywhere in the flow domain and its position at
the end of 1, 2, 3, 4,. . . periods is plotted on a plane. If

the positions spread chaotically, then the initial condi-

tion is chaotic and the tracer put there will stretch and

fold and mix thoroughly. On the other hand, if a ma-

terial point was initially placed in a periodic point, the

tracer will move to different locations and, after a

number of periods, will return to its initial position. This

occurs because the tracer was placed initially in a regular
region. If placed in a regular region the tracer will not

stretch and fold and thus will not mix well. In industrial

applications, one is interested in rate information, i.e.

how fast does the tracer mix in the fluid domain. Poin-

car�ee sections are an interesting tool but they only give

an indication of long term behaviour.

A major paper dealing with mixing in the journal

bearing flow is the work by Swanson and Ottino (1990).
The authors constructed an experimental setup (Fig. 2 is

from their work) and developed several analytical and

numerical tools to study chaos in this flow. Apart from

Poincar�ee sections, they also found the locations of low

order periodic points. A very good agreement with Po-

incar�ee sections was obtained because low order elliptic

periodic points were centers of regular islands. These

authors also plotted the unstable manifolds of the per-
turbed saddle point (counter-rotating case) in the region

of minimum gap. The agreement between these plots

and the blob deformation experiments is remarkable for

different boundary displacement protocols. Another

tool developed there is the calculation of the stretching

field. To calculate the stretching of an infinitesimal

vector of arbitrary initial orientation one must know the

deformation tensor. Since, for this flow, the analytical
solution for constant boundary conditions is known, the

length stretch can be calculated at discrete points in the

flow. An arbitrary value of stretching is chosen for

which mixing is considered good. Plotting the well mixed

region with a given colour and badly mixed regions with

another colour the authors obtain an excellent agree-

ment between stretching plots and both experiments and

other analytical tools developed in the paper.
One must keep in mind that a characteristic feature of

all Stokes flows is that they are reversible. Even if the

tracer is placed in a chaotic region, one can return the

system to its original position by inverting the angular

displacements. This property can be used to test both

the experimental setup and the numerical integration

technique employed.

How is the heat transfer rate affected by time-periodic
boundary movement? Again if the inner and outer

boundaries are kept at Thot and Tcold respectively, when

both cylinders are motionless, the solution of r2T ¼ 0

leads to the solution, in bipolar coordinates ½a; b; z
:
T ¼ C1a þ C2;

where C1 and C2 are integration constants. This equa-

tion gives the temperature distribution in the journal

bearing for the pure conduction regime.

When one or both cylinders are in motion at constant

angular velocity, the temperature of fluid inside the
circulation zone becomes practically homogeneous due

to the mixing process there. This leads to a heat transfer

rate increase between the boundary and the fluid. One

can expect to obtain a Nusselt number enhancement of

about 50% depending both on the size of the vortex zone

and on the P�eeclet number. In their work, Ghosh et al.

(1992) showed that the Nusselt number is proportional

to Pe1=2 for constant angular velocities. Since the heat
transfer enhancement over the conduction solution is

due to the vortex, the enhancement is a maximum in the

region of maximum gap. In the region where the gap is

thinnest, the streamlines are nearly circular and the

temperature profile is practically linear from one wall to

the other, there is no heat transfer enhancement here. To

increase further the heat transfer enhancement, one

must find a way of exchanging fluid from the vortex
zone to the other regions. This can be done by varying

the angular velocity of one cylinder periodically in time.

For the journal bearing flow, Ghosh et al. (1992)

considered the counter-rotating case and allowed the

inner cylinder angular velocity to vary sinusoidally as a

function of time. Obviously to increase the heat transfer

enhancement the amplitude of the modulation must be

as high as possible so that the instantaneous angular
velocity ratio varies over the widest possible range as

long as Stokes flow conditions are valid in the flow. The

authors used the Melnikov method and an analysis by

Chirikov (1979) to show that an optimum modulation

frequency exists for which heat transfer is a maximum.

The authors tested their theoretical results by solving

numerically the convection/diffusion equation in order

to calculate the heat transfer enhancement in the journal
bearing flow. Their numerical code gave the same value
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of the optimum modulation frequency. However, the

enhancement was somewhat lower than that predicted

by the analysis.

The journal bearing geometry is defined by two di-
mensionless parameters, the clearance ratio and the ec-

centricity ratio. So far, in all calculations we have

assumed that the journal bearing geometry was given.

However one may ask if there is a particular value of the

eccentricity ratio for which mixing and heat transfer

enhancement are best? Kaper and Wiggins (1993) ap-

plied tools from the field of adiabatic dynamical systems

theory to make quantitative predictions of quantities in
quasi-steady Stokes flows with slowly varying saddle

stagnation points i.e. the counter-rotating journal bear-

ing flow. They show that a large amplitude continuous

slow and periodic modulation of the angular velocity

causes the flow to exhibit large non-integrable regions.

They define a potential mixing zone from the maximum

and minimum instantaneous stagnation streamlines and

show that this zone covers the largest part of the flow
domain when the cylinders are almost concentric (low

eccentricity) and when the amplitude of the modulation

varies over the widest range. They also obtain a value of

the optimum modulation frequency which is somewhat

smaller than the value predicted by Ghosh et al. (1992).

All experimental and theoretical studies discussed up

to now have dealt with Newtonian fluids. In practice,

the highly viscous fluids for which chaotic advection can
be an interesting alternative if they are to be heated or

cooled in a shorter amount of time are usually non-

Newtonian. Niederkorn and Ottino (1993) constructed

an apparatus very similar to the one built by Swanson

and performed dye advection experiments with visco-

elastic fluids. In order to calculate the different analytical

tools, they also obtained a numerical solution to the

steady flow using a finite difference method. Their al-
gorithm used a special form of the compressible conti-

nuity equation to form a purely hyperbolic set of

equations. As in Swanson and Ottino (1990), the com-

parison between experimental and numerical results of

blob advection are impressive. The effects due to the

elasticity of the fluid are not obvious. In some cases the

size of regular islands increases with the Weissenberg

number while in other cases the opposite effect occurs. A
more recent study by Kumar and Homsy (1996) is an

attempt at explaining this not well understood phe-

nomenon.

3. Other 2-D periodic flow geometries

Chien et al. (1986) had previously studied chaotic
advection and mixing experimentally in cavity flows. In

this flow configuration, a rectangular enclosure con-

taining fluid has both its top and bottom walls which

can move. By an alternate periodic motion of the two

walls, these authors show how a blob of fluid stretches

and folds exponentially. After several periods the blob

can reach a length of several meters. The influence of

boundary displacement protocol and of initial location
are also discussed in this paper. A novel mapping

method developed by Kruijt et al. (2001) uses this flow

as an example to investigate the influence of geometry

and operating conditions on mixing quality.

A more complicated flow occurs when two cylinders

are placed inside a larger one, all three can rotate. This

apparatus was constructed by Jana et al. (1994). For

constant angular velocities of all cylinders, there are
many more possible streamline portraits in this flow.

The authors also obtained numerically the solution for

steady boundary conditions using a boundary integral

method technique in order to develop dynamical tools

for use in mixing studies. They compare experiments

with numerical calculations and use a variety of tools

such as the calculation of stretching distribution, the

location of periodic points, and the calculation of the
unstable manifolds to analyze mixing in this flow. Here

the authors show that higher order periodic points can

be even more important than period-one points in es-

tablishing the advection template and extended regions

of large stretching. Another major point is that as long

as the forcing function produces the same displacement

per period, it produces the same qualitative mixing

pattern.
Another two-dimensional flow which has been con-

structed in order to study mixing is the one between two

confocal ellipses. In this flow, the inner and outer

boundaries glide along their circumference, the flow

geometry does not change with time. This geometry

possesses two axis of symmetry while the journal bear-

ing flow possesses only one. Symmetries are very im-

portant in the study of mixing, as pointed out by
Franjione et al. (1989). Large islands are located on lines

of symmetry or on opposite sides of the line. It is pos-

sible to manipulate symmetries in such a way so that an

island is moved into a region of good mixing.

The first step consisted in finding the analytical so-

lution of the creeping flow equations in elliptical coor-

dinates (Saatdjian et al. (1994)). When the two ellipses

are gliding in opposite directions, a heteroclinic trajec-
tory (two saddle points connected by two different

streamlines) is formed in the flow. By varying the in-

stantaneous angular velocity ratio, the saddle points are

displaced from one wall to the other. At the same time,

the experimental setup was constructed, (see Saatdjian

et al. (1995, 1996)) and dye advection experiments were

successfully compared to numerical simulations. Heat

transfer calculations (Lepr�eevost and Saatdjian, 1998)
using the analytical velocity distribution to obtain the

temperature field showed that better mixing was ob-

tained when both boundaries were turning at the same

time than when they were made to turn alternatively.
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None of the tools discussed so far could have predicted

such a result. Fig. 3 shows the heat transfer enhance-

ment in this geometry as a function of the modulation

frequency. An appropriate choice of the modulation

frequency can lead to a heat transfer enhancement over
the pure conduction regime of more than 200%. Al-

though it is difficult to compare the performance of two

different geometries precisely, it is clear that this geom-

etry yields better results than the journal bearing flow

because it contains twice as many saddle points which

upon disruption enable fluid to move from one zone to

the other.

4. Heat transfer enhancement in 3-D steady flows

There are not very many examples of real 3-D flows

dominated by viscous forces and where chaotic particle

trajectories can be observed. Steady three-dimensional

flows have been known to give rise to chaotic stream-

lines ever since the work of H�eenon (1966) on the ABC
flow, the three equation dynamical system is:

dx
dt

¼ A sin zþ C cos y;
dy
dt

¼ B sin xþ A cos z;

dz
dt

¼ C sin y þ B cos x:

H�eenon showed that this flow contained KAM tori as
well as chaotic motions of the Smale horseshoe type.

However, the above flow is a steady solution of the 3-D

Euler equations, the flow itself has little practical im-

portance. In the chemical industry, mixing of highly

viscous fluids is sometimes obtained by placing internals

in a tube. One of the most popular is the Kenics static

mixer, it is widely used in industry. Khakhar et al. (1987)

imagined a partitioned pipe mixer, as a model of this

mixer, they show that it is possible to obtain chaotic
trajectories in this steady 3-D flow. The mixer consists of

a pipe partitioned into a sequence of semi-circular ducts

by means of rectangular plates fixed perpendicularly to

each other. Fluid is forced through the tube by an axial

pressure gradient while the pipe is rotated about its axis

relative to the assembly of plates. A cross sectional flow

is thus created in each semi-circular element. Using an

approximate velocity field obtained using the method of
weighted residuals, the authors plotted Poincar�ee sections

and calculated local stretching of material lines. The

authors conclude with a series of questions, remained

unanswered even today, both on the practical side and

on the fundamental nature of the flow. This mixer was

constructed later and visualization experiments were

performed by Kusch and Ottino (1992).

The theoretical work on another real, steady 3-D flow
exhibiting chaotic behaviour by Jones et al. (1987, 1990)

was probably the catalyst that was needed to spark

several research teams in Europe and in the United

States to undertake research on this area and to con-

struct the flow imagined by these authors. This flow is

simpler to construct than the partitioned pipe mixer

because it contains no moving parts. A twisted pipe with

fluid flowing inside it was imagined. In order to avoid
confusion, the term curved denotes a section of pipe that

has a constant radius of curvature and lies in a plane.

Curved pipes can be imagined as parts of a torus. On the

other hand, twisted pipes consist of curved pipe seg-

ments which are not all in the same plane. It is well

known that in a curved pipe, inertia leads to the for-

mation of two longitudinal vortices of opposite sign.

The considered pipe geometry was composed of a series
of curved segments. The twist arises because the plane of

curvature of each subsequent pipe segment forms an

angle relative to the preceding segment. One can define a

pitch angle v which is the twist angle between two

curved segments. A pitch angle v ¼ 0 represents a torus

and v ¼ 180 represents an S-shaped pipe. Both of these

cases are not very interesting because the twisted pipe is

confined to a plane. For a given pitch angle between
these two limits, the symmetry planes of the secondary

vortices in successive bends will not coincide and a

particle flowing down the pipe will experience a se-

quence of transverse flows. This process creates chaotic

particle motion.

To show that chaotic streamlines occur in such a

twisted pipe, Jones et al. (1987, 1990) derive an ap-

proximate velocity field based on the earlier analysis of
Dean (1927, 1928) for a curved pipe. The flow of par-

ticles in a twisted pipe of pitch angle v is represented as a

sequence of Dean solutions augmented by a rotation of

the particles through an angle )v between successive

Fig. 3. Heat transfer enhancement as a function of modulation fre-

quency in the 2-D periodic flow between confocal elliptic cylinders.
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elements. Some very restrictive assumptions are implied

in the analysis. The flow is assumed to be fully devel-

oped when it enters the curved segment, the flow is as-

sumed to readjust very quickly from one secondary flow
to the other. And finally, the lowest-order Dean solution

is employed even though higher order approximations

are available.

Nevertheless, the above authors show, using different

tools such as Poincar�ee sections, that chaotic streamlines

do occur in this flow. The practical implication is that

the stirring quality is enhanced without requiring addi-

tional energy input into the system. The wall to fluid
heat transfer coefficient is also increased by the twisted

pipe geometry without a notable increase in pressure

drop. The authors conclude that although their model is

not very realistic for a twisted pipe consisting of a suc-

cession of basic cells, they argue that it can be approx-

imated in the laboratory by inserting segments of

straight pipe between curved elements. The authors

openly invite researchers to address this flow from an
experimental point of view.

In the beginning of the last decade, flow visualization

experiments (Peerhossaini and Le Guer, 1990; Le Guer

and Peerhossaini, 1991) in a curved pipe using a laser

induced fluorescence technique have confirmed the ex-

istence of chaotic trajectories in this steady flow. Peer-

hossaini et al. (1993) constructed a Plexiglas curved

channel with 4 bends for these experiments, see Fig. 4.
The pipe has a square cross-section and a twist angle of

n ¼ p=2. Each curved segment is separated from the

next one by a straight element. Axial velocity measure-

ments at the entrance and exit of each bend for Dean

numbers comprised between 141 and 530 were per-

formed. For the lowest Dean number the results show

that even though the flow is fully developed at the en-

trance of the first curved element, the Dean vortices are
not completely developed at the exit. Dye advection

experiments on this installation clearly show the char-

acteristics of this 3-D chaotic flow. Dye was injected at

the entrance via a square grid containing 81 holes. For

some injection locations, the dye stretches and folds

exponentially, at the end of 4 bends the length of the

filament is several orders of magnitude greater than at
the entrance. For other injection locations the stretching

is regular. This behaviour is very similar to the one en-

countered in 2-D periodic flows discussed above.

In conjunction with the visualization experiments,

these authors constructed a heat exchanger test facility.

Two experimental coils, one helical and the other chaotic

were constructed from stainless steel tubing. Both coils

had the same length and the same number of bends. The
coiled tubes were plunged into a constant temperature

bath. Entrance and exit temperatures were measured for

each case. Obviously, great care was taken in order to

test the two coils for exactly the same conditions. De-

pending on the Reynolds number, the heat transfer en-

hancement can reach 20% despite a pressure drop

increase which is very small, of the order of 1%.

These results are in total agreement with those ob-
tained in the United States by Acharya et al. (1992).

These authors also constructed a heat exchanger facility

and tested two different coils, a constant axis and an

alternating (chaotic) axis coil. These authors also de-

velop a numerical model based on the low order Dean

solution. These authors obtain a heat transfer

Fig. 4. Geometry used in experiments of chaotic advection in the

twisted pipe flow, see Peerhossaini et al. (1993).

Fig. 5. Streaklines in the flow between confocal elliptic cylinders, the

axial velocity is 1 mm/s.
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enhancement and a pressure drop increase very similar

to the results obtained by Peerhossaini et al. (1993).

However, in both studies, the authors conclude that the

flow geometry has not been optimized and that greater
gains can be expected in the future.

5. Time-periodic 3-D flows

If an axial flow is super-imposed onto the 2-D time-

periodic journal bearing flow, chaotic streaklines can be

observed in the flow. In fact, any tangential 2-D periodic
flow such as the flow between confocal ellipses with

circumferencial gliding walls or the vortex mixing flow

has a 3-D periodic counterpart. Fig. 5 shows the streak-

line obtained between confocal elliptic cylinders, the

outer cylinders turns at constant velocity while the inner

cylinder turns at a time-periodic angular velocity. The

fluid viscosity here is very high, the average axial ve-

locity is about 1 mm/s and the axial Reynolds number is

of the order of 0.1.

All of these flows belong to a certain particular class
since the three velocity components are all independent

of the axial coordinate. Concerning the flow in an ec-

centric helical annular mixer, the Eulerian velocity field

is known analytically for steady boundary conditions.

The axial velocity component is determined by solving

the axial component of rP ¼ lr2V separately since this

equation is not coupled to the cross-sectional compo-

nents.
Kusch (1991) and Kusch and Ottino (1992) con-

structed the eccentric helical annular mixer, and pub-

lished very beautiful photographs of chaotic streaklines.

The experiments are both labor intensive and very ex-

pensive since the gallons of dyed glycerine that

flow through the mixer cannot be recycled. Since the

Fig. 6. Exit temperature standard deviation as a function of the number of periods of inner cylinder rotation NP. In all cases the parameter NT ¼ 16 is

fixed.
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analytical solution involves no approximations (apart

from creeping flow conditions), they were able to com-

pare experimental and numerically calculated streak-
lines. This is not possible either in the partitioned pipe

mixer or in the twisted duct flow because the model

equations are approximate. How-ever, apart from this

comparison between experiment and model equations,

there is a lack of analytical tools available for the opti-

mization of the boundary displacement protocol.

Mixing experiments in the annular region between

confocal ellipses like that shown in Fig. 4 have been
performed by Lepr�eevost (2000) and Lef�eevre et al. (in

press). The experiments show that a blob of tracer will

stay inside KAM tubes all along the reactor. The ver-

tical tubes are defined roughly by the potential mixing

zone defined by Kaper and Wiggins (1993). However, as

in the experiments by Kusch (1991), the influence of the

axial velocity component is seen to be very important

though not well understood.

A recent study by Rodrigo et al. (in press) takes a

quantitative look at the flow in the eccentric helical

annular mixer. The case where the cylinders are turning
in opposite directions is considered. The outer cylinder

turns at a constant angular velocity while the inner

cylinder turns at an angular velocity which can vary si-

nusoidally with time. Two dimensionless parameters are

defined, NT and NP. The first one, NT is a measure of the

average number of turns the outer cylinder makes dur-

ing the average residence time of a tracer particle in the

reactor. Notice that this parameter does not depend on
the modulation frequency. The second one, NP is a

measure of the number of periods the inner cylinder

makes during the average residence time of a tracer

particle in the reactor. Fluid enters the adiabatic mixer

(or heat exchanger) with a linear, radial temperature

profile. The exit temperature profile is analyzed, and in

particular the standard deviation at the exit is calculated

for different values of the parameters NP and NT.

Fig. 7. Dye advection experiment in the eccentric helical annular mixer. The initial blob (figure on the left) is represented by 100,000 material points.

Their exit location half way down the mixer and at the exit are plotted for different values of NP and NT. The case NT ¼ 30 and NP ¼ 16 gives the best

heat transfer enhancement.
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Obviously the best boundary displacement protocol is

the one which gives a uniform cross-sectional profile at

the exit. Calculations clearly show that for a given value

of NT, there is a value of NP which leads to a minimum

in the exit temperature standard deviation, this is shown

in Fig. 6. Other tools discussed previously confirm this

result. For example, a blob of tracer is introduced at the
entrance. Since the trajectories can be calculated from

the analytical solution for constant boundary condi-

tions, one can plot the exit tracer location for different

values of NP and NT.

The case leading to the best mixing is obviously the

one for which the blob spreads chaotically over the

whole cross-section, as shown in Fig. 7. The calculation

of the stretching field for this flow, shown in Fig. 8, also
leads to the same conclusion. The mixing protocol

of this apparatus can now be optimized.

6. Conclusions

The heat transfer rate into or out of highly viscous,

high Prandtl number fluids can be enhanced significantly
by a phenomenon known as chaotic advection or La-

grangian turbulence. In this review article we have

focused on the two-dimensional periodic and three-

dimensional real flows that can be used in an industrial

process. The former are useful in batch processes while

the latter are suited for continuous flow operation. De-

spite the fact that many real flows exhibiting chaotic

behaviour have been imagined and constructed over the
last two decades, chaotic flows have, unfortunately, not

been used in industry.
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